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In our previous work we simulated moisture dispersion in soil using a quantum walk framework,
modeling soil patches as nodes on a qubit lattice with dynamically updated coupling constants based
on local gradients. The previous paper on the subject served as a proof of concept, establishing
the quantum algorithm and examining the limitations of classical simulations in higher dimensions.
However, it assumed a closed system in which total moisture was conserved. Accounting for envi-
ronmental interactions such as loss through evaporation or gains from watering systems, and the
development of a Hamiltonian to emulate real-world behavior was left for future work. This paper
addresses both of these challenges.

I. INTRODUCTION

Controlled-environment agriculture, such as green-
houses and indoor farms, offers a promising path toward
sustainable and localized food production. These sys-
tems allow for precise regulation of light, air tempera-
ture, and humidity. However, soil moisture remains one
of the most difficult variables to control. Unlike air or wa-
ter vapor, which follow relatively simple thermodynamic
laws, soil is a complex porous medium where other factors
such as capillary action, gravity, evaporation, and plant
root uptake interact in nonlinear and spatially varying
ways. These effects are coupled and often depend on local
gradients, making accurate modeling of soil moisture a
computationally difficult task. Simulations must capture
both global dynamics and local interactions, a require-
ment that scales poorly in classical computation. Accu-
rately predicting how moisture disperses through soil is
essential for optimizing irrigation, conserving water, and
ensuring crop health.

A. Beyond Closed-System Models

In our previous work, we introduced a quantum walk
framework to simulate moisture dispersion, representing
soil as a lattice of qubits with dynamically updated cou-
pling constants based on local gradients. That model
treated the soil as a closed system, where total mois-
ture was conserved. While this inherent conservation of
the quantum walk was physically reasonable for an ide-
alized isolated system, and even provided initial moti-
vation, it fails to capture essential real-world processes
such as moisture loss through evaporation or gains from
irrigation. These interactions are inherently open-system
effects, requiring the exchange of water between the soil
and its surroundings.
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B. The Need for a Realistic Hamiltonian

The lack of real-world data limited our ability to de-
velop and validate a Hamiltonian that accurately repro-
duced observed moisture behavior. Without this, the
simulation could not be directly connected to known
physical processes or reliably predict how the system
would evolve under agricultural conditions. Establishing
such a Hamiltonian is essential for systematically mod-
eling how moisture flows, dissipates, and interacts with
external reservoirs.

C. Scope of This Work

In this work, we extend our previous closed-system
quantum walk model by incorporating environmental in-
teractions that break moisture conservation. We intro-
duce a modification to the algorithm that allows for mois-
ture to be gained or lost dynamically, representing real-
world processes such as evaporation and irrigation. To
support and validate this model, we designed and built
a controlled experimental system capable of monitoring
moisture levels across discrete soil patches over time.
By initializing known moisture distributions and track-
ing their evolution for a week, we gathered time-resolved
data describing how moisture naturally spreads and dissi-
pates. This data was then used to fit a first-order Hamil-
tonian, enabling a direct comparison between theoretical
predictions and real-world behavior.

II. METHODOLOGY

A. Extending the Quantum Walk to an Open
System

Our original algorithm modeled soil moisture as a
closed system, where total moisture was conserved. In
this framework, each soil patch is represented by a qubit,
and moisture spreads through unitary diffusion between
neighboring qubits. While this formulation is mathemat-
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ically consistent and ideal for purely theoretical simula-
tions, it fails to capture real-world processes, where mois-
ture is continuously lost and gained by the system.

To address this limitation, we introduce an ancilla-
based open-system extension to the original algorithm
that allows each node to dynamically exchange moisture
with an external reservoir. This modification breaks con-
servation by enabling moisture to flow into or out of the
system during each timestep.

1. Ancilla Registry Structure

In this extended model, each qubit representing a soil
patch is paired with a dedicated ancilla qubit. The pri-
mary qubit encodes the current moisture level of that soil
patch, while the ancilla partner qubit acts as a local en-
vironmental reservoir, initialized either in the |0⟩ or |1⟩
state.

• |0⟩ → External source ready to add moisture (ir-
rigation, rain)

• |1⟩ → External sink ready to remove moisture
(evaporation, root uptake)

FIG. 1. Each soil patch is represented by a primary qubit
paired with an ancilla qubit acting as a local environmental
reservoir. Moisture exchange occurs between the two at the
start of each timestep.

2. Algorithm Step Breakdown

Each timestep of the open-system simulation consists
of three key stages:

Stage 1: Ancilla Connection via Hamiltonian Interac-
tion Term

At the start of each timestep, the primary qubit and its
ancilla are connected through a Hamiltonian interaction
term, which governs the flow of moisture between the
soil node and its external reservoir. The strength of this
coupling can be defined through an arbitrary equation,
making it highly flexible. For instance, the coupling term
can depend on the current state of the soil qubit or on ex-
ternal variables such as time, environmental conditions,

or targeted irrigation patterns. By adjusting this term,
different environmental scenarios can be simulated within
the same framework.
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If we wish to maintain a closed system for a given
timestep, where no moisture is added or removed, the
coupling strength is simply defined to be g (t, ψi, ...) = 0.
In this case, the interaction term has no effect, and the
ancilla qubit can effectively be ignored, reducing the sys-
tem to the original closed quantum walk formulation.

Stage 2: Addition or Removal of Moisture During a
Timestep

Once the coupling strength g (t, ψi, ...) between the soil
qubit and its ancilla has been defined, the system evolves
using the standard timestep operator. The direction of
moisture exchange depends on the initial state of the
ancilla qubit, as previously defined in Ancilla Registry
Structure (|0⟩ → drain, |1⟩ → add).

Stage 3: Measurement and Reset of Ancilla Registry

After allowing moisture exchange during a single
timestep, we measure and reset the ancilla registry to
its initial state, either |0⟩ or |1⟩. The measurement and
realignment allows for a net change in moisture, as it
escapes/enters through the ancilla qubits.

To provide intuition, the ancilla qubits can be thought of
as buckets that either receive water from the soil or pour
water into it:

• Removal case (|0⟩): Imagine the ancilla as an
empty bucket placed beneath its partner soil node.
At each timestep some water falls into the empty
bucket from the soil node. Measurement and re-
alignment would then be dumping out the water to
return to a completely empty bucket for the next
timestep. The water that was in the bucket has now
exited the system through the realignment, result-
ing in a net loss of moisture.

• Addition case (|1⟩): Here the ancilla starts as
a full bucket. During each timestep some of that
bucket’s water trickles into soil node. Measure-
ment and realignment is then refilling the bucket
to return to a completely full bucket for the next
timestep, resulting in a net moisture gain.

B. Experimental Setup and Data Collection

To validate the open-system quantum walk framework
and provide real-world data for modeling, we designed
and executed a controlled soil moisture experiment. This
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experiment produced a continuous, time-resolved dataset
that was later used to fit the Hamiltonian model and eval-
uate how well it captured real-world moisture dispersion
dynamics.

1. System Overview

The physical experiment was carried out using a
custom-built soil monitoring box divided into four
equally sized cubes arranged in a 2x2x1 grid. Each patch
was treated as a discrete spatial region that directly cor-
responded to one node in the computational model de-
scribed in Section A.

Two of the patches were initially watered, while the
other two were left dry, creating a clear initial gradient
for moisture to diffuse across. This layout was chosen
to provide a simple, interpretable scenario that still ex-
hibited meaningful dynamic behavior. The exact initial
moisture levels and final observed distributions are pre-
sented in Results.

FIG. 2. Experimental box layout. Each of the four soil
patches corresponds to a single node in the simulation.

2. Sensors and Data Logging

We used capacitive soil moisture sensors (AITRIP
ASIN B094J8XD83) for reliable, corrosion-resistant
moisture measurement across the soil patches. These sen-
sors estimate volumetric moisture content based on the
dielectric properties of the soil, offering improved dura-
bility compared to resistive probes.

Each sensor was embedded near the center of a soil
patch and connected to a micro controller for automated
data logging. The system recorded both analog volt-
age outputs and timestamps, allowing for high-resolution
time series of moisture content over a 7-day experimental
period.

3. Environmental Considerations

The experiment was conducted indoors to minimize
uncontrolled environmental variables such as direct sun-
light, wind, or rain. While small variations in room tem-
perature and humidity naturally occurred, these effects
were assumed to be uniform across the system and were
therefore not explicitly modeled.

Because the primary goal was to study moisture dif-
fusion and loss, no active irrigation or additional water
input was provided after the initial setup. This allowed
the natural interplay between soil patches and evapora-
tion to dominate the system dynamics, providing a clean
test case for fitting the Hamiltonian model.

C. Model Fitting and Hamiltonian Extraction

The second component of the methodology involved
developing and fitting a Hamiltonian model to describe
the moisture dynamics observed in the physical experi-
ment.

1. Hamiltonian Formulation

To represent the system, we defined a Hamiltonian
H(t) with two primary contributions:

1. Loss Term (Zeroth Order): Represents evapo-
ration or drainage of moisture from each soil patch
to the environment. This term models how mois-
ture naturally decreases over time, even without
interactions between patches.

Hiloss = −λ
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)
Every patch shares a common weight λ for environ-
mental loss with their ancilla partner, limited to be
independent of the gradient.

2. Diffusion Term (First Order Gradient): Rep-
resents moisture transfer between neighboring
patches. This term captures the tendency of mois-
ture to flow from wetter patches to drier ones, sim-
ulating the natural diffusion process in soil.

Hijdiffusion = −Γ∇ij(t)
(
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)
Every patch shares a common weight Γ for tran-
sitions between neighbors, limited to a first order
dependence on the gradient.
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2. Fitting Procedure Formulation

The values of λ and Γ were determined by fitting the
model to the experimental dataset collected over six days.
And evaluating success by minimizing the sum of the
difference between the experimental and simulation end
points.

3. Scope of the Model

This Hamiltonian was intentionally limited to a first-
order diffusion term and a uniform zeroth-order loss term.
While higher-order terms and spatially varying evapora-
tion could be included, these were left for future work to
maintain tractability and focus on validating the basic
framework.

By keeping the model simple, we established a clear
baseline for comparing theoretical predictions to real-
world measurements, while still capturing the dominant
physical behaviors of moisture dispersion and environ-
mental loss.

III. RESULTS

A. Initial Moisture Distribution

At the start of the experiment, two patches were wa-
tered while the other two were left dry, creating a clear
gradient for moisture diffusion. This initial condition al-
lowed for both spatial spread of moisture between patches
and overall loss due to evaporation to be observed over
the course of the six-day run. The initial values observed
for moisture were ψi = [0.413, 0.175, 0.165, 0.476], nor-
malized with the sensor’s measurement of free space.

FIG. 3. 2x2 diagram of the initial moisture distribution,
where darker shading represents higher moisture content.

B. Experimental Data Over Time

The final values observed at the end of the six days
were were ψf = [0.319, 0.141, 0.116, 0.401].

FIG. 4. 2x2 diagram of the final moisture distribution, where
darker shading represents higher moisture content.

Moisture levels were recorded once per hour over six
consecutive days for a total of 138 entries.

FIG. 5. Line graph showing moisture levels for each patch
over six days.

C. Fitted Hamiltonian Solution

Without applying a formal optimization algorithm be-
cause of simulation costs, an approximate solution was
found manually with time step dt = 0.1, as well as loss
and dispersion factors λ,Γ = [1, 0.1].

FIG. 6. Line graph showing the simulated moisture levels
for each patch over 80 entries, where each simulated entry is
scaled by a factor 40/69 to an experimental one hour entry.
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IV. DISCUSSION

A. Interpretation of Results

The simplified Hamiltonian model was able to replicate
the dominant moisture dynamics observed in the exper-
iment, demonstrating that even a minimal formulation
can capture essential features of soil-water behavior. In
particular, nodes 1, 2, and 3 displayed approximately lin-
ear decreases in moisture throughout the seven-day pe-
riod. This pattern was well matched by the combination
of a uniform zeroth-order loss term and a first-order diffu-
sion term, suggesting that these two mechanisms are suf-
ficient to explain drying behavior in regions where evapo-
ration and direct lateral moisture transfer dominate. The
agreement in these three patches indicates that the core
assumptions of the model are valid for much of the sys-
tem under the controlled conditions of this experiment.

However, node 4 deviated significantly from this linear
trend. While the other nodes declined at nearly constant
rates, node 4’s moisture decay was distinctly nonlinear,
showing that the simplified Hamiltonian does not fully
capture all processes at play. This discrepancy suggests
that additional mechanisms, such as spatial heterogene-
ity or nonlinear environmental interactions, are influenc-
ing the dynamics of that region. The inability to repro-
duce node 4’s behavior highlights the need for extending
the model beyond its current formulation, as higher-order
terms or more complex structures will be necessary to
account for the richer physical behavior observed in the
data.

B. Limitations of the Approach

There are several limitations that constrain both the
accuracy and scope of this study. First, the Hamilto-
nian itself was deliberately restricted to only two terms:
a uniform zeroth-order loss representing evaporation and
a first-order gradient term representing diffusion between
neighboring patches. While this provided clarity and
tractability, it also meant that more complex spatial ef-
fects, heterogeneous loss rates, and time-dependent en-
vironmental factors were excluded from consideration.
These omissions inevitably reduce the model’s ability to
replicate certain behaviors, such as the nonlinearity ob-
served in node 4.

Another key limitation lies in how the fit between the
model and experimental data was evaluated. In this
work, the parameters λ and Γ were adjusted informally,
with the model essentially tuned by eye to match the ini-
tial and final moisture levels. Although this approach was
sufficient for demonstrating proof of concept, it lacks the
rigor needed for precise quantitative validation. A sys-
tematic fitting procedure, such as minimizing the mean
squared error across all nodes and timesteps, would pro-
vide a more objective measure of model performance and

allow for direct comparison between different Hamilto-
nian formulations.
Finally, the experiment itself was highly constrained.

The study was limited to a single 2×2 grid of soil patches
under uniform, controlled conditions. While this made
it possible to directly map the physical system to the
quantum walk framework, it also represents a significant
simplification relative to real-world agricultural environ-
ments. In practice, soil moisture behavior is influenced
by a wide range of variables, including soil composition,
plant root structure, uneven irrigation, and environmen-
tal variability. These factors were not represented in
this initial experiment, limiting the generalizability of the
findings.

C. Toward More Realistic Models

Despite these limitations, this work provides a clear
path forward for building more realistic and comprehen-
sive models. The strong agreement between the sim-
plified Hamiltonian and three of the four nodes demon-
strates that the core framework is sound, but the devia-
tion observed in node 4 highlights where future develop-
ment must focus. Introducing higher-order spatial terms
into the Hamiltonian will be a critical next step for accu-
rately capturing nonlinear dynamics and patch-specific
behaviors. These terms would allow the model to repre-
sent more complex moisture flows that go beyond simple
uniform diffusion.
Equally important will be the adoption of a more rigor-

ous parameter estimation process. Rather than adjusting
parameters by eye, future work should implement formal
optimization techniques to determine the most accurate
values of λ , Γ, and any additional coefficients introduced
by higher-order terms. Such methods would allow for
statistically meaningful comparisons between alternative
models and provide confidence in the predictive power of
the final formulation.
Finally, expanding the experimental system will be es-

sential for testing scalability and realism. Moving beyond
a 2×2 grid to larger arrays of patches, introducing non-
uniform soil properties, and allowing for time-varying en-
vironmental inputs such as periodic irrigation or rain-
fall will all bring the experiment closer to real agricul-
tural conditions. These improvements will create richer
datasets and challenge the quantum walk framework to
model increasingly complex and realistic scenarios.

V. CONCLUSION

This work extends our previous closed-system quan-
tum walk framework to model soil moisture dispersion
under realistic conditions where moisture is continuously
gained and lost through environmental interactions. By
introducing an ancilla-based modification to the origi-
nal algorithm, we enabled dynamic moisture exchange
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between soil patches and external reservoirs, providing
a mechanism to represent processes such as evaporation
and irrigation within the quantum walk paradigm.

To support and validate this approach, we built a con-
trolled experimental setup consisting of a four-patch soil
box monitored continuously over six days. This experi-
ment produced a detailed time series of moisture levels,
capturing both the diffusion of water between patches
and its gradual depletion to the environment. Using this
dataset, we formulated a simplified Hamiltonian contain-
ing only two terms: a uniform zeroth-order loss term and
a first-order diffusion term. These terms were adjusted to
match the observed data, providing a direct connection
between the simulation and measured soil behavior.

The model reproduced key behaviors observed in the
experiment, including the approximately linear decline in
moisture seen in three of the four patches and the grad-
ual equalization of moisture across the grid. However,
one patch exhibited nonlinear behavior that the current
Hamiltonian could not capture, highlighting the need for

higher-order terms and more complex formulations. This
finding demonstrates both the strength and the limita-
tions of the simplified model: it is sufficient to describe
the dominant processes in many cases, but incomplete
when faced with spatial variability or nonlinear dynam-
ics.
While the fitting process here was informal, relying on

visual matching rather than rigorous optimization, the
results clearly demonstrate proof of concept. Future work
will focus on introducing higher-order spatial terms, im-
plementing systematic parameter estimation techniques,
and scaling up the experimental system to larger and
more realistic soil networks. These advances will allow
the framework to be tested under increasingly complex
conditions and evaluated with greater statistical rigor.
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