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Abstract

In this project, we integrate a custom Variational Quantum Eigensolver (VQE) into
portfolio optimization to enhance scalability and performance on noisy intermediate-
scale quantum (NISQ) devices. We introduce a Shot-Efficient Simultaneous Perturba-
tion Stochastic Approximation (SE-SPSA) algorithm, a modification of the classical
SPSA, which dynamically adjusts the number of measurement shots during optimiza-
tion. This approach effectively balances resource efficiency and accuracy, making it
suitable for the constraints of current quantum hardware. By mapping the portfo-
lio optimization problem onto a quantum Hamiltonian, we leverage quantum algo-
rithms to find optimal asset allocations that balance risk and return. We implement
hardware-specific optimizations, including dynamic decoupling and qubit mapping,
to mitigate noise and decoherence effects. Our results demonstrate that the combina-
tion of custom VQE and SE-SPSA effectively navigates the noisy landscape of NISQ
devices, offering promising avenues for quantum-enhanced financial algorithms.
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1 Introduction

Portfolio optimization is a critical task in finance, aimed at balancing risk and returns
across asset allocations. Traditional methods, such as the Markowitz mean-variance
framework, struggle with high-dimensional data and complex constraints, leading to
significant computational demands that limit their scalability. Quantum computing,
with its ability to explore multiple solutions simultaneously through superposition and
entanglement, offers a promising alternative for addressing these challenges. However,
current noisy intermediate-scale quantum (NISQ) devices present their own obstacles,
such as noise, decoherence, and hardware limitations, which necessitate effective error
correction and resource optimization strategies.

This project integrates the Variational Quantum Eigensolver (VQE) into portfolio
optimization, focusing on enhancing scalability, feasibility, and performance on noisy
quantum hardware. By mapping the optimization problem to a quantum Hamil-
tonian, we leverage quantum algorithms to find solutions that are computationally
intensive for classical methods.

Our approach builds upon methodologies presented in recent studies by Goldman
Sachs and AWS [2], and Buonaiuto et al. [}, who have highlighted the potential and
challenges of quantum algorithms in portfolio optimization.

2 Method

In this section, we delve into the methods and algorithms we employed to integrate
the Variational Quantum Figensolver into our portfolio optimization problem.

2.1 Data Preparation

We obtained closing price data for the stocks from Yahoo Finance and calculated
daily returns. The data spans from June 1, 2022, to September 20, 2024.

import pandas as pd
import numpy as np
from pypfopt import expected_returns, risk_models

# Closing price data obtained from yfinance
# 2year_closing.csv
data = pd.read_csv( , parse_dates=True, index_col=

)
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returns_df = data.pct_change () .dropna()

frequency = len(returns_df)

mu = expected_returns.mean_historical_return(data, frequency=
frequency)

S = risk_models.sample_cov(data, frequency=frequency)

Listing 1: Data Preparation

2.2 Mapping to Quantum Hamiltonian

Next, we mapped the portfolio optimization problem onto a quantum Hamiltonian
H | where our goal is to find its ground state. The Hamiltonian represents the total
energy of the system and includes terms for expected returns, risk (represented by
covariances), and penalty terms for budget constraints.

The Hamiltonian is constructed as follows:
2
H=> hZ+r <Z Jijzizj> +0 (ZpiZi — 1)
i i<j i
where:

o Z; are Pauli-Z operators acting on qubits.

h; represents the expected return coefficients.

» J;; represents the covariance coefficients between assets.
o ¢ is the penalty factor for the budget constraint.

p; are the normalized prices of the assets.

r is the risk factor of the asset.

We defined functions to calculate these coefficients based on the financial data. For
example, to compute the coefficients for expected returns, we used:

1 def rev_the_hamiltonian():

2

3

I =1 ] * sum(d)
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# Coefficients for expected returns (h_i Z_i)
h = (np.array([ul]) * np.array([P]) / B)
h_ =[]
hi = []
for i in range(len(d)):
for j in range(d[il]):

h_.append(h[0] [i] * (2%xj))

I[i] =

hi.append(''.join(I))

Ifi] =

Listing 2: Computing Expected Return Coefficients

2.3 Quantum Unconstrained Binary Optimization (QUBO)

To represent our optimization problem in a form suitable for quantum algorithms,
we utilized the Quantum Unconstrained Binary Optimization (QUBO) model [3]. In
the QUBO formulation, we express the objective function as a quadratic polynomial
of binary variables:

Minimize f(z) = 2’ Qu,

where x is a vector of binary variables and () is a matrix representing the coefficients
of the quadratic terms. This formulation allows us to encode both the objective and
the constraints of the optimization problem into a single function.

In our project, the binary variables represent the inclusion or exclusion of asset quan-
tities in the portfolio. By incorporating expected returns, covariances, and budget
constraints into the QUBO model, we can represent the portfolio optimization prob-
lem as a Hamiltonian suitable for quantum algorithms.

2.4 Variational Quantum Eigensolver (VQE)

The Variational Quantum Eigensolver (VQE) is a hybrid quantum-classical algorithm
designed to find the ground state (minimum eigenvalue) of a given Hamiltonian [4].
VQE leverages quantum resources to evaluate the expectation value of the Hamilto-
nian and classical optimization algorithms to adjust the parameters of a parameterized
quantum circuit (ansatz) to minimize this expectation value.

The key steps of the VQE algorithm are:



1. Ansatz Circuit Preparation: We designed a parameterized quantum cir-
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cuit using the EfficientSU2 ansatz provided by Qiskit, which offers a balance
between expressibility and circuit depth.

from giskit.circuit.library import EfficientSU2

def cost_funct(params):

gc = QuantumCircuit(size)

ansatz = EfficientSU2(size)

qc.compose (ansatz, inplace=True)

# Additional circuit operations if needed

Listing 3: Ansatz Circuit

. Expectation Value Measurement: Using the quantum circuit, we prepared
a quantum state and measured the expectation value of the Hamiltonian.

from qgqiskit.primitives import StatevectorEstimator

def cost_funct(params):

# Prepare the ansatz circuit

gc = QuantumCircuit(size)

ansatz = EfficientSU2(size)
gc.compose (ansatz, inplace=True)

# Define the observables (Hamiltonian terms)
observables = [
[SparsePauliOp(hi, h_)],
[SparsePauliOp(ji, J__)1,

[SparsePaulilOp(bi, pi_)]

# Estimate the expectation value

estimator = StatevectorEstimator ()

job = estimator.run([qc, observables, params])
result = job.result()

return sum(result[0].data.evs)

Listing 4: Expectation Value Calculation

3. Classical Optimization: We employed a classical optimizer (COBYLA from

SciPy) to adjust the circuit parameters to minimize the expectation value ob-
tained from the quantum measurements.



10

11

12

13

14

15

from scipy.optimize import minimize

# Initial parameters
x0 = 2 * np.pi * np.random.random(size * 8)

# Optimization

result = minimize (
cost_funct,
x0,
method= s
options={ 1 le-4, : True}
)
print ( , result.x)
print ( , result.fun)

Listing 5: Parameter Optimization

2.5 Resource Usage Analysis

To evaluate the performance and scalability of our implementation, we conducted
resource usage analysis by measuring the memory consumption and execution time
during the optimization process. This analysis helps us understand the computational

demands of the algorithm and its feasibility on current hardware.



2.5.1 Memory Usage Measurement

We used the memory_profiler library in Python to monitor the memory usage during
the execution of the optimization routine.

1 from memory_profiler import memory_usage
2
3 def ability_test():

4 error = 1lel8

5 while error > 1e8:

6 x0 = 2 * np.pi * np.random.random(size * 8)

7 result = minimize(cost_func, x0, method= , options
={ : le-4, : Truel})

8 error = result.fun

9 v = test_ansatz(result.x)

10 return v

11

12 with Session(backend=backend) as session:

13 size = b

14 shots = 1000

15 # Initialize target_vector...

16 sampler = StatevectorSampler ()

17 mem_usage = memory_usage(ability_test, interval=1)

18 print ( , sum(

mem_usage) / len(mem_usage))

Listing 6: Measuring Memory Usage

2.5.2 Execution Time Measurement

We measured the execution time using the time module.

1 import time
2

3 with Session(backend=backend) as session:

4 size = 5

5 shots = 1000

6 # Initialize target_vector...
7 sampler = StatevectorSampler ()
8 start_time = time.time ()

9 ability_test ()

10 end time = time.time ()



print ( , end_time -
start_time)

Listing 7: Measuring Execution Time

3 Implementation and Error Correction

Our implementation follows a ranked approach, gradually enhancing the algorithm’s
performance through a series of targeted improvements:

« Rank 0: Modeling and Quantization of Portfolio Optimization

We began by modeling the portfolio optimization problem within the VQE
framework. This involved processing historical financial data to calculate risk,
reward, and adherence to budget constraints, and generating a Hamiltonian
whose ground state represents the optimal combination of investments. Invest-
ments were quantized, ensuring that VQE outputs correspond to whole-number
multiples of assets. The cost function was made highly customizable, allowing
for variations in the choice of ansatz and simulation services.

« Rank 1: Classical Simulation of VQE
Utilizing the COBYLA minimizer, we simulated the VQE classically to demon-
strate convergence on an optimal solution. This step provided a baseline per-
formance level and served as a foundation for subsequent experiments with
quantum hardware, helping us understand the theoretical performance of the
algorithm without quantum noise interference.

« Rank 2: Quantum Execution with Hardware Optimization

We transitioned from classical simulations to execution on IBM quantum hard-
ware, employing gate translation techniques to match the circuit’s gates with
those specific to the quantum processor. Qubit mapping was also implemented
to select the most coherent and entanglement-capable qubits, minimizing errors
and enhancing the expressivity of the VQE circuit. This involved advanced
usage of the pass_manager () function to rewrite Pauli strings and maintain
accurate estimations during the quantum execution.

e« Rank 3: Dynamic Decoupling for Noise Reduction
To mitigate noise between qubit operations, dynamic decoupling techniques
were introduced. This approach inserted carefully timed sequences during idle
periods in the circuit, stabilizing qubits and reducing the impact of decoherence.
This enhancement was particularly effective given the structure of our ansatz,



which left relatively long gaps between operations, creating opportunities to
preserve qubit states in noisy environments.

Rank 4: Shot-Efficient SPSA for Scaling

Addressing the challenge of shot scaling—where increasing circuit size expo-
nentially raises the number of shots needed to maintain accuracy—we de-
veloped a Shot-Efficient Simultaneous Perturbation Stochastic Approximation
(SE-SPSA) algorithm. This algorithm starts with a lower shot count and in-
creases gradually, aligned with iterative accuracy demands. The SE-SPSA ap-
proach was tested on Rigetti’s "Ankaa-2,” showcasing the robustness of our
noise-reduction techniques and the ability to adapt shot allocation dynami-
cally, effectively managing the trade-off between accuracy and computational
cost.

Rank 5: Future Directions in Ansatz Design

Although we did not fully implement this rank due to time constraints, we
explored the potential for future improvements by challenging the standard
supremacy of the Hardware EfficientSU2 ansatz. Inspired by existing studies
[1], we considered whether more complex entanglement structures could outper-
form the current standard as quantum hardware advances, especially in ion and
atom-based systems like QuEra and IonQ. This rank sets the stage for inves-
tigating alternative ansatz designs that could leverage enhanced entanglement
capabilities, pushing the boundaries of what is possible with VQE in portfolio
optimization.



3.1 Shot-Efficient SPSA

The classical SPSA is defined as follows. The Simultaneous Perturbation Stochastic
Approximation (SPSA) is an iterative optimization algorithm used to approximate
the gradient of a cost function with respect to its parameters.

SPSA works by approximating the gradient using two measurements of the function:
one with a positive perturbation and one with a negative perturbation. The gradient
estimate is then used to iteratively update the parameters towards the optimal so-
lution. This approach is particularly useful in noisy environments, such as quantum
computing, where function evaluations can be resource-intensive and imprecise.

The gradient approximation in SPSA is given by:

ﬂ - >\ _’_ =
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In this formula:

. 0 represents the vector of parameters.
e ¢ is a small perturbation value.

¢ Aisa randomly generated perturbation vector, where each component is inde-
pendently sampled.

SPSA’s simultaneous perturbation of all dimensions allows for efficient gradient esti-
mation with minimal computational overhead, making it well-suited for optimization
tasks in noisy environments, such as quantum computing, where function evaluations
are costly and noisy.
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SE(Shot-Efficient)-SPSA introduces an adaptive mechanism to dynamically adjust
the number of shots (measurements) used during optimization. This approach is
specifically designed to balance resource efficiency and accuracy, making SE-SPSA
highly effective for noisy quantum computers.

How Dynamic Adjustment Works:

o Initial Stage: Low Shot Count
SE-SPSA begins with a lower number of shots per gradient estimation. This
early stage focuses on broad exploration of the parameter space, making coarse
adjustments with minimal resource consumption. The algorithm evaluates the
cost function using fewer shots, which provides a rough approximation of the
gradient direction.

e Adaptive Increase in Shots: Refinement Phase
As the optimization progresses, SE-SPSA gradually increases the number of
shots based on the iteration number and the convergence behavior. For example,
the shot count may increase linearly as S, = Sy + k x «, where S is the initial
shot count, k is the iteration number, and « controls the scaling rate. This
allows for finer parameter adjustments and more accurate gradient estimation
as the algorithm nears convergence.

o Feedback Loop with Convergence Monitoring
SE-SPSA continuously monitors the optimization process and adjusts shot
counts based on convergence. If the improvement in the cost function dimin-
ishes, indicating proximity to the optimal solution, the shot increase slows down
to avoid unnecessary resource use. Conversely, if significant parameter adjust-
ments are needed, shot counts are increased to enhance accuracy, allowing the
algorithm to better handle noise.

Noise Resistence

» Resource Efficiency: By starting with fewer shots and only increasing them
as needed, SE-SPSA conserves computational resources, reducing the time and
cost associated with quantum measurements.

e Noise Adaptation: The stochastic nature of stochastic processes helps the
algorithm navigate the noisy landscape of quantum hardware. As shots increase,
SE-SPSA reduces the impact of noise, refining the solution with higher precision
when necessary.
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« Balancing Exploration and Exploitation: FEarly low-shot stages allow
broad exploration, while later high-shot stages fine-tune the parameters, en-
suring a smooth convergence to the optimal solution. This balance is crucial in
noisy environments, where excessive precision early on would waste resources.

o Scalability: SE-SPSA’s adaptive shot scaling efficiently manages the exponen-
tial increase in shot requirements as quantum circuits grow in size, maintaining
accuracy without overwhelming the system’s capacity.

The dynamic shot adjustment of SE-SPSA makes it particularly effective for quan-
tum optimization, leveraging shot efficiency to overcome the inherent noise and mea-
surement constraints of current quantum computers. By tuning the shot allocation
dynamically, SE-SPSA achieves a robust balance between resource use and solution
accuracy.
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3.2 Results and Performance

This section we will showcase our result.
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Figure 1: Decision characteristics

Figure EI illustrates the relationship between risk and return, ¢ and k for the portfolios
generated by our algorithm. Each point represents a distinct portfolio configuration,
showcasing the trade-offs between expected returns and associated risk levels. The
data shows a broad spread, indicating diverse portfolio combinations with varying

risk-return characteristics.

The dense clustering towards lower risk and return values suggests that most port-
folios are conservatively optimized, while the spread towards higher returns with in-
creasing risk reflects more aggressive investment strategies. This visualization helps
identify potential optimal portfolios that align with different risk tolerance levels,
demonstrating the flexibility and scalability of our VQE-based optimization approach
in balancing risk and reward within a noisy quantum environment.

VQE_Base200iter0.75R

&0 0 1000

Figure 2: Energy vs Iteration
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Figure E plots the energy (cost function value) of the VQE algorithm over iterations.
The rapid decline in energy demonstrates the algorithm’s convergence towards an
optimal solution, with significant improvements in the early iterations and finer ad-
justments later. The gradual reduction and stabilization of the energy value indicate
the effectiveness of the SE-SPSA in refining the parameters efficiently.

Ankaa_Rigetti

nnnnnnnn

Figure 3: Energy vs Iteration on Ankaa2

Figure H shows the energy convergence behavior of the VQE running on Rigetti’s
Ankaa-2 quantum processor with the SE-SPSA method. The graph illustrates a non-
monotonic pattern in the energy values across iterations, indicating fluctuations in
convergence. This suggests the presence of noise and variability inherent to current
quantum hardware.

The oscillations in energy values highlight the challenges of working with NISQ de-
vices, where SE-SPSA is actively adapting the shot count dynamically to handle
noise. Despite these fluctuations, there is an overall downward trend, demonstrating
that SE-SPSA effectively manages noise and guides the VQE towards lower energy
states.

4 Conclusion

In this project, we successfully integrated the Variational Quantum Eigensolver (VQE)
into portfolio optimization, demonstrating its potential to solve complex financial
problems that are challenging for classical algorithms. By mapping the portfolio op-
timization problem onto a quantum Hamiltonian and utilizing a quantum-classical
hybrid approach, we were able to find optimal asset allocations that balance risk and
return.

Our implementation introduced several innovations to enhance performance on noisy
intermediate-scale quantum (NISQ) devices. We developed a Shot-Efficient Simulta-
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neous Perturbation Stochastic Approximation (SE-SPSA) algorithm, which dynam-
ically adjusts the number of measurement shots during optimization to balance re-
source efficiency and accuracy. This approach effectively managed the trade-off be-
tween computational cost and solution precision, making it well-suited for the limi-
tations of current quantum hardware.

Through a ranked series of enhancements, we incrementally improved the algorithm’s
performance. Starting from classical simulations, we progressed to quantum execution
with hardware-specific optimizations, including gate translation and qubit mapping
to minimize errors. The implementation of dynamic decoupling techniques further
reduced the impact of noise and decoherence, stabilizing qubit states during idle
periods in the circuit.

Our results demonstrated that the SE-SPSA method effectively navigates the noisy
landscape of NISQ devices, achieving convergence towards optimal solutions in port-
folio optimization. The energy convergence plots showed that despite inherent quan-
tum noise, the algorithm could find lower energy states indicative of better portfolio
configurations. This indicates that VQE, combined with our SE-SPSA approach, is
a promising tool for financial optimization problems.

However, there are limitations to our current approach. The scalability of the al-
gorithm is still constrained by the depth and coherence times of available quantum
hardware. As the size of the portfolio (and thus the number of qubits) increases, the
circuit becomes more susceptible to noise and errors. Additionally, while our SE-
SPSA method improves resource efficiency, further optimization is needed to handle
larger, more complex financial models, which was not implemented due to the time
constraint of the project, but can be a clear direction for future research.

Future work could focus on exploring alternative ansatz designs that leverage ad-
vanced entanglement capabilities of emerging quantum hardware platforms, such as
ion-trap or neutral-atom systems. Investigating more sophisticated error mitigation
and correction techniques could also enhance the algorithm’s robustness. Moreover,
integrating real-world financial constraints, such as transaction costs, taxes, and lig-
uidity considerations, would make the model more applicable to practical portfolio
management.

In conclusion, our project demonstrates the feasibility and potential advantages of us-
ing quantum algorithms, specifically VQE with SE-SPSA, for portfolio optimization.
As quantum technology continues to advance, these methods could offer significant
improvements over classical approaches, the prospect for quantum portfolio optmiza-
tion is promisimg.
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